

Low Cost Manufacturing of Advanced Silicon-Based Anode Materials

June 8, 2017

Avery J. Sakshaug, Abirami Dhanabalan, Chris Timmons, Aaron Feaver, Henry R. Costantino (PI)

Project ID: ES268

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

Start Date: January 2016

End Date: December 2018

Percent Complete: 60%

Budget

Total Project Funding

DOE: \$2.81M

• G14: \$1.23M

Funding received in FY 2016

Funding for FY 2017

Barriers

- Cost: Anode materials that contribute towards the DOE target of \$125/kWh
- Performance: Silicon based anodes to improve Li-ion energy density for vehicles
- Life: Maintain current cycle life of graphite anode Li-ion batteries

Partners

Relevance

- Cost: Current Li-ion battery cost structure will not enable widespread use of battery electric vehicles (BEV) or plug-in hybrid electric vehicles (PHEV)
 - Current technology trajectory will increase performance, but also increase cost
- Performance: BEV and PHEV range needs to be extended by increasing Wh/kg and Wh/L and maintaining power capability
- Cycle Life: Batteries with short life time i.e. 2-3 years can be tolerated in consumer electronics but not vehicles
- Group14 targets:
 - Reduce cost of current graphite based anodes
 - Improve capacity increase EV range
 - Maintain cycle life of current batteries

Milestones

Year 1

Milestone	Type / Timing	Description
Supplier Identification	Technical / Q1	Identify minimum 2 suppliers for each new feedstock material required for Si-C composite. Materials must be available at full scale volume supporting < \$125/kWh.
Sample Down-select	Technical / Q2	Down select to 3 lab-scale silicon samples for performance and cost
Synthesize Si-C	Technical / Q3	Synthesize 1x10g Si-C with 1000 mAh/g
Synthesize Si-C	Go/No-Go / Q4	Analysis indicates that the synthesized 1x1g Si-C with 1000 mAh/g is predicted to achieve 500 cycles at a projected cost of <\$125/kWh

Year 2

Milestone	Туре	Description			
Synthesize Si-C 1000 cycles	Technical / Q2	Synthesize 1x10g Si-C with 1000 mAh/g; predicted 1000 cycles; < \$125/kWh projected cost			
Performance Validation	Technical / Q3	Validate performance of at least one pilot-scale-synthesized material in the lab			
Commission Equipment	Technical / Q3	Complete installation and commissioning of all new process equipment			
Synthesis with Demo	Technical / Q4	The synthesis of 10 kg completes a demonstration 1000 mAh/g and predicted 1000 cycles at < \$125/kWh at full scale volume			
One would be a long to the state of the stat					

Approach / Strategy

	Year 1				Year 2			
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Materials Sourcing								
and Process								
Assessment								
Manufacturing Process Development	S	ynthesize Si-	C Composite	S				
		Optimize Si-C Composites and Processing for Cost						
		Full Cell Testing						
To also also as Trons of an O		Safety & Process Line Construction						
Technology Transfer &		Downselect						
Pilot Manufacturing						Synt	hesize Pilot B	atch

Go / No-Go Cost / Performance

Final Cost / Performance / Volume

- Develop and implement low cost silicon synthesis process compatible with the carbon platform
- Demonstrate success of the approach in full cell LIBs
- Manufacture pilot scale material in volumes suitable for qualification with LIB customers using low cost process

Technical Accomplishments: G14's Si-C Composite

- Group14 has developed its own Si-C composite material
 - Both carbon and silicon are produced from low-cost precursors
- Representative half-cell data:

Half cell cycled at C/10 (5 cycles), then C/5, 0.005 - 0.8 V, with I/2 hold, 1 M LiPF6 in EC:DEC w/10% FEC, Li cathode, anode = 20% super C45, 20% CMC-SBR, 60% Si-C

Technical Accomplishments: Example of Progress in Full Cell Performance

Volumetric energy (Wh/L) for DSS-3, Sample "Jan. 2016" and "11-2-2016" cycled at C/2 rate, 2.0 – 4.2 V, with I/2 hold and "1-12-2016" cycled at 1C, 2.5 – 4.2V, with C/10 every 20 cycles, and I/2 hold, 1 M LiPF6 in EC:DEC w/10% FEC, LiNiCoAlO cathode, 16-20% excess anode (anode=10% CMC-SBR, 10% Super-P, 28% Si-C, 52% graphite).

Technical Accomplishments: Achieved ~600 Cycle Stability

Volumetric energy (Wh/L) for three representative Si-C samples, cycled at C/2 rate, 2.5 – 4.2 V, with I/2 hold, cycled at C/10 every 20 cycles, 1 M LiPF6 in EC:DEC w/10% FEC, LiNiCoAlO cathode, 5-15% excess anode (anode=5% CMC-SBR, 5% Super-C45, ~30% Si-C, ~60% graphite).

Technical Accomplishments: Summary of *In Situ* TEM Analysis of Si-C

Sample #	Si wt%	Primary/Secondary Paricle Size	Measured 2D Expansion	Phase of Silicon/Carbon	General Structure	Homo- geneity
1	40	5µm	20%~47%	a-Si&L-Gr-C	Dense porous structure	Good
2	46	5nm/ 2-5μm	20%~36%	Poly-Si&a-C	Fine Si NPs in a-C matrix	Good
3	48	10-20nm/ 2-5µm	55%~76%	a-Si&L-Gr-C	Uniform dense particle of LGC with a-Si	Great
4	42	50-100nm/ 2-5μm	20%~42%	Poly-Si&a-C	c-Si NPs on porous C scaffold	Good
5	34	50-100nm/ 2µm	19%~45%	Poly-Si&Gr-C	c-Si NPs on porous C scaffold with C coating	Good
6	41	30-40nm/ 2μm	37%	Poly-Si&a-C	c-Si NPs aggregates on a-C	Great
7	39	20-30nm/ 2-8µm	19%~59%	Poly-Si&Gr-C	c-Si NPs aggregates covered with Gr-C	Great

Gr-C: Graphitic Carbon; **L-Gr-C**: Less Graphitic Carbon; **Poly-Si**: very fine poly Si NPs which shows on SAED pattern; **a-C**: amorphous carbon; **c-Si**: larger Si NPs which show scattered spots on SAED pattern; Homogeneity rate is based on the portion of the major phase

Acknowledgements: Chongmin Wang & Langli Luo, PNNL **Group14 Technologies**

Technical Accomplishments: Low Particle Expansion by *In Situ* TEM

Sample 5, Before Lithiation

Sample 5, After Lithiation
2D Expansion ~29.2%

Acknowledgements: Chongmin Wang & Langli Luo, PNNL

Technical Accomplishments: Example of Homogeneity of Si in Composite

SAED diffraction patterns of Sample 3

No observable phase variation/amorphous C and Si throughout.

Acknowledgements: Chongmin Wang & Langli Luo, PNNL

Technical Accomplishments: Progress on Scale-up to Achieve Cost and Performance Requirements

- COGS model established for \$/kg or \$/Ah basis
 - Feasibility of <\$0.034/Ah confirmed at lab scale
 - Future scale up and larger full cell device test data will allow for translation into \$/kWh basis
- Multiple concepts explored for ~kg scale and beyond
 - Lead concept identified and tested at lab-pilot scale (~10g)
- Exploring multiple vendors/manufacturing sites, expect to finalize plans for ~kg scale production in near future

Responses to Previous Year Reviewers' Comments

Comment: "...cell level goals are missing, and without those investing in process scale-up is not reasonable."

Response: Our cell level goal is to achieve 1000 cycles at < \$125/kWh at full scale volume. In order to assess progress towards this goal, we have moved from lab scale to a lab pilot scale, and will ultimately move into pilot scale, all with the intent to engage a major US battery construction and testing lab, also in accordance with another reviewer's comment (see below).

Comment: "...consider adding a partner with extensive electrode/cell making/testing experience."

Response: We are currently producing material at lab-pilot scale and future pilot scale with the intent to collaborate with a major US battery construction and testing lab for evaluation.

Comment: "...the approach does not show any novelty and how to address the critical issues related with Si, such as mechanical fracture and low cycle efficiency."

Response: Based on 3rd party analysis, our Si-C composites comprise as low as 5 nm amorphous silicon homogeneously dispersed throughout a carbon matrix. Also from 3rd party analysis, our Si-C composites provide for very low particle expansion, without observation of particle fracturing. At this time, our materials exhibit cycle efficiency suitable to achieve over 500 cycles to 80% degradation in full cells, and we are committed to improving this performance to 1000 cycles per our stated project goal.

Collaboration and Coordination with Other Institutions

- University of Washington Subcontract
- Pauzauskie Lab: Funded graduate student
 - Material modeling
 - Advanced characterization

- PNNL Subcontract
- Chongmin Wang Group: Funded post-doc
 - In situ TEM of Silicon Expansion
 - SAED
 - Advanced spectroscopy

Remaining Challenges and Barriers

- Improve Si-C full cell stability from 500 to 1000 cycles
- Down-select and optimize material manufacturing process
- Procure and install process equipment
- Commission and validate process strategy
- Produce pilot material and demonstrate performance in industrially relevant full cells
- Validate Si-C performance and cost according to DOE targets

Proposed Future Work

- Pilot scale equipment purchase, installation and commissioning
- Materials and process optimization at lab-pilot scale (~10g), followed by pilot scale (~kg)
- Pilot-scale validation of performance in full cells while maintaining projected cost target
 - Employ 3rd party for device construction
- Customer validation of Si-C performance

Summary

- Down selected raw materials and lab (~g) processes suitable to achieve >500 cycle stability in Li ion full cells
- Group14 Si-C composites exhibit low particle expansion and uniform dispersion of nano-sized silicon within carbon matrix
- Currently at lab-pilot scale (~10 g)
- Progressing towards final project milestones
 - Procurement, commissioning, and operation of pilot scale equipment towards validating Si-C composite cost and performance in industrially relevant full cells

Technical Backup Slide

Back Up Technical Slide: Use of TGA for Insight into Silicon Structure

Sample	% "Small" Si	% "Large" Si	
Lab example	66-95	5-34	
Lab-pilot example	66-99	1-34	

- Weight loss via TGA @ 10 C/min from RT to 1400 C in air
- Differentiation into surface and bulk diffusion regimes